This is a limited proof of concept to search for research data, not a production system.

Search the MIT Libraries

Title: Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection

Type Dataset Anastasia A. Minervina, Ekaterina A. Komech, Aleksei Titov, Meriem Bensouda Koraichi, Elisa Rosati, Ilgar Z. Mamedov, Andre Franke, Grigory A. Efimov, Dmitriy M. Chudakov, Thierry Mora, Aleksandra M. Walczak, Yury B. Lebedev, Mikhail V. Pogorelyy (2020): Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection. Zenodo. Dataset. https://zenodo.org/record/3835956

Authors: Anastasia A. Minervina (Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia) ; Ekaterina A. Komech (Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia) ; Aleksei Titov (National Research Center for Hematology, Moscow, Russia) ; Meriem Bensouda Koraichi (Laboratoire de physique de l'École normale supérieure, PSL, Sorbonne Université́, Université de Paris, and CNRS, Paris, France) ; Elisa Rosati (Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany) ; Ilgar Z. Mamedov (Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia) ; Andre Franke (Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany) ; Grigory A. Efimov (National Research Center for Hematology, Moscow, Russia) ; Dmitriy M. Chudakov (Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia) ; Thierry Mora (Laboratoire de physique de l'École normale supérieure, PSL, Sorbonne Université́, Université de Paris, and CNRS, Paris, France) ; Aleksandra M. Walczak (Laboratoire de physique de l'École normale supérieure, PSL, Sorbonne Université́, Université de Paris, and CNRS, Paris, France) ; Yury B. Lebedev (Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia) ; Mikhail V. Pogorelyy (Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia) ;

Links

Summary

Processed TCRbeta and TCRalpha repertoires after mild COVID-19 infection, see preprint: https://www.biorxiv.org/content/10.1101/2020.05.18.100545v1

and GitHub repository: https://github.com/pogorely/Minervina_COVID

Two donors (M and W), two biological replicates of PBMC (F1 and F2), CD4+, CD8+, and Memory subpopulations for each post-infection time points (day 15, 30, 37, 45 post-infection), and pre-infection PBMC repertoires sampled in 2019 and 2018. 

More information

  • DOI: 10.5281/zenodo.3835956

Subjects

  • TCR, RepSeq, COVID

Dates

  • Publication date: 2020
  • Issued: May 20, 2020

Notes

Other: Demultiplexing and UMI-consenuses were done with migec (v. 1.2.7), alignments and assembly of UMI-consensuses into clonotypes performed with mixcr (v. 2.1.11).

Rights


Much of the data past this point we don't have good examples of yet. Please share in #rdi slack if you have good examples for anything that appears below. Thanks!

Format

electronic resource

Relateditems

DescriptionItem typeRelationshipUri
IsSupplementTohttps://www.biorxiv.org/content/10.1101/2020.05.18.100545v1
IsSupplementTohttps://github.com/pogorely/Minervina_COVID
IsVersionOfhttps://doi.org/10.5281/zenodo.3835955
IsPartOfhttps://zenodo.org/communities/covid-19
IsPartOfhttps://zenodo.org/communities/zenodo