This is a limited proof of concept to search for research data, not a production system.

Search the MIT Libraries

Title: huggingface/transformers: Marian

Type Software Thomas Wolf, Lysandre Debut, Julien Chaumond, Victor SANH, Patrick von Platen, Aymeric Augustin, Funtowicz Morgan, Rémi Louf, Sam Shleifer, Stefan Schweter, Manuel Romero, Denis, erenup, Matt, Piero Molino, Grégory Châtel, Bram Vanroy, Tim Rault, Gunnlaugur Thor Briem, Anthony MOI, Malte Pietsch, Catalin Voss, Bilal Khan, Fei Wang, Louis Martin, Davide Fiocco, Martin Malmsten, Lorenzo Ampil, HUSEIN ZOLKEPLI, Clement (2020): huggingface/transformers: Marian. Zenodo. Software. https://zenodo.org/record/3826688

Authors: Thomas Wolf (@huggingface) ; Lysandre Debut (Hugging Face) ; Julien Chaumond (Hugging Face) ; Victor SANH (@huggingface) ; Patrick von Platen ; Aymeric Augustin (@canalplus) ; Funtowicz Morgan (HuggingFace) ; Rémi Louf ; Sam Shleifer (Huggingface) ; Stefan Schweter ; Manuel Romero ; Denis ; erenup ; Matt ; Piero Molino ; Grégory Châtel (DisAItek & Intel AI Innovators) ; Bram Vanroy (@UGent) ; Tim Rault (@huggingface) ; Gunnlaugur Thor Briem (Qlik) ; Anthony MOI (Hugging Face) ; Malte Pietsch (deepset) ; Catalin Voss (Stanford University) ; Bilal Khan ; Fei Wang (University of Southern California) ; Louis Martin ; Davide Fiocco ; Martin Malmsten ; Lorenzo Ampil (@thinkingmachines) ; HUSEIN ZOLKEPLI ; Clement (@huggingface) ;

Links

Summary

Marian (@sshleifer) A new model architecture, MarianMTModel with 1,008+ pretrained weights is available for machine translation in PyTorch. The corresponding MarianTokenizer uses a prepare_translation_batch method to prepare model inputs. All pretrained model names use the following format: Helsinki-NLP/opus-mt-{src}-{tgt} See docs for information on pretrained model discovery and naming, or find your language here AlbertForPreTraining (@jarednielsen)

A new model architecture has been added: AlbertForPreTraining in both PyTorch and TensorFlow

TF 2.2 compatibility (@mfuntowicz, @jplu)

Changes have been made to both the TensorFlow scripts and our internals so that we are compatible with TensorFlow 2.2

TFTrainer now supports new tasks Multiple choice has been added to the TFTrainer (@ViktorAlm) Question Answering has been added to the TFTrainer (@jplu) Fixes and improvements Fixed a bug with the tf generation pipeline (@patrickvonplaten) Fixed the XLA spawn (@julien-c) The sentiment analysis pipeline tokenizer was cased while the model was uncased (@mfuntowicz) Albert was added to the conversion CLI (@fgaim) CamemBERT's token ID generation from tokenizer were removed like RoBERTa, as the model does not use them (@LysandreJik) Additional migration documentation was added (@guoquan) GPT-2 can now be exported to ONNX (@tianleiwu) Simplify cache vars and allow for TRANSFORMERS_CACHE env (@BramVanroy) Remove hard-coded pad token id in distilbert and albert (@monologg) BART tests were fixed on GPU (@julien-c) Better wandb integration (@vanpelt, @borisdayma, @julien-c)

More information

  • DOI: 10.5281/zenodo.3826688

Dates

  • Publication date: 2020
  • Issued: May 14, 2020

Rights

  • info:eu-repo/semantics/openAccess Open Access

Much of the data past this point we don't have good examples of yet. Please share in #rdi slack if you have good examples for anything that appears below. Thanks!

Format

electronic resource

Relateditems

DescriptionItem typeRelationshipUri
IsSupplementTohttps://github.com/huggingface/transformers/tree/v2.9.1
IsVersionOfhttps://doi.org/10.5281/zenodo.3385997
IsPartOfhttps://zenodo.org/communities/zenodo