This is a limited proof of concept to search for research data, not a production system.

Search the MIT Libraries

Title: Scatter Plot

Type Software Cheng WU (2019): Scatter Plot. Zenodo. Software. https://zenodo.org/record/3464233

Author: Cheng WU (Jinan University) ;

Links

Summary

Version 20190501

Scatter Plot is a handy tool to maximize the efficiency of data visualization in atmospheric science. Many existing generalized data visualization software had been extensively used, but they remain unable to fulfill a number of specified research purposes in atmospheric science. That becomes the motivation of Scatter Plot development. The program includes Deming and York algorithm for linear regression, which considers uncertainties in both X and Y, and is more realistic for atmospheric applications.  Scatter Plot is Igor based, and packed with a variety of useful features for data analysis and graph plotting, including batch plotting, data masking via GUI, color coding in Z-axis, data filtering and grouping on different time scales (year, season, month, hour, day of week, etc).  

 

For more details regarding the evaluation and application of Scatter Plot, please refer to 

Wu, C. and Yu, J. Z.: Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting, Atmos. Meas. Tech., 11, 1233-1250, doi:10.5194/amt-11-1233-2018, 2018.

 

Please cite this paper if Scatter Plot is used in your publication.

 

The latest version of the program can be found on my website:

https://sites.google.com/site/wuchengust/

https://wucheng.weebly.com/

https://doi.org/10.5281/zenodo.832416

 

 

 

Adoption in research publications: Ji, D., Gao, W., Maenhaut, W., He, J., Wang, Z., Li, J., Du, W., Wang, L., Sun, Y., Xin, J., Hu, B., and Wang, Y.: Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement, Atmos. Chem. Phys., 19, 8569-8590, doi: 10.5194/acp-19-8569-2019, 2019. Wang, N. and Yu, J. Z.: Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong, Atmos. Environ., 166, 110-119, doi: 10.1016/j.atmosenv.2017.07.009, 2017. Wu, C., Huang, X. H. H., Ng, W. M., Griffith, S. M., and Yu, J. Z.: Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: Implications for inter-protocol data conversion, Atmos. Meas. Tech. doi: 10.5194/amt-9-4547-2016, 2016. Zhou, Y., Huang, X. H. H., Griffith, S. M., Li, M., Li, L., Zhou, Z., Wu, C., Meng, J., Chan, C. K., Louie, P. K. K., and Yu, J. Z.: A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer, Atmos. Environ., 143, 300-312, 2016.http://dx.doi.org/10.1016/j.atmosenv.2016.08.054 Qiao, T., Zhao, M., Xiu, G., and Yu, J.: Seasonal variations of water soluble composition (WSOC, Hulis and WSIIs) in PM1 and its implications on haze pollution in urban Shanghai, China, Atmos. Environ., 123, Part B, 306-314, 2015. http://dx.doi.org/10.1016/j.atmosenv.2015.03.010

 

 

List of programs I developed:

ScatterPlot Histogram and Boxplot MRS RT-ECOC raw data processor Benchtop Sunset ECOC analyzer data processor DRI 2001A data Sorter SMPS Toolkit Mie Scattering Aethalometer data correction

 

=======================================================================================================

 

Scatter Plot是一个方便的工具,可以最大限度地提高大气科学中数据可视化的效率。 虽然有许多现有的通用数据可视化软件,但不能满足许多大气科学特定的研究目的,所以我开发自己的程序。 本程序包括WODR, Deming和York算法进行线性回归,这三种算法考虑了X和Y都包含不确定性(观测误差),对大气的应用而言更加客观地反映真实情况。它是基于Igor的,并且包含大量用于数据分析和图形绘图的有用功能,包括批量绘图,通过图形界面实现数据掩蔽,Z轴的颜色编码,根据数据或字符串进行过滤和分组。

有关Scatter Plot的评估和应用的更多细节,请参阅(如果你在文章中用到了本软件,请引用以下文章)

Wu, C. and Yu, J. Z.: Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting, Atmos. Meas. Tech., 11, 1233-1250, doi:10.5194/amt-11-1233-2018, 2018.

 

关于程序的最新信息可以在我的网站上找到:

https://sites.google.com/site/wuchengust/

https://wucheng.weebly.com/

https://doi.org/10.5281/zenodo.832416

 

 

 

 

More information

  • DOI: 10.5281/zenodo.3464233
  • Language: en

Subjects

  • Deming Regression, York Regression, Weighted orthogonal distance regression

Dates

  • Publication date: 2019
  • Issued: May 01, 2019

Rights


Much of the data past this point we don't have good examples of yet. Please share in #rdi slack if you have good examples for anything that appears below. Thanks!

Format

electronic resource

Relateditems

DescriptionItem typeRelationshipUri
IsVersionOfhttps://doi.org/10.5281/zenodo.832416
IsPartOfhttps://zenodo.org/communities/zenodo