This is a limited proof of concept to search for research data, not a production system.

Search the MIT Libraries

Title: Overtopping events in breakwaters under climate change scenarios [Dataset]. Zenodo

Type Dataset Mendonça, A.C., Lemos, R, Fortes, C.J., Reis, M.T, Neves, M.G, Capitão, R (2018): Overtopping events in breakwaters under climate change scenarios [Dataset]. Zenodo. Zenodo. Dataset. https://zenodo.org/record/1574835

Authors: Mendonça, A.C. (LNEC) ; Lemos, R (LNEC) ; Fortes, C.J. (LNEC) ; Reis, M.T (LNEC) ; Neves, M.G (LNEC) ; Capitão, R (LNEC) ;

Links

Summary

Reliable prediction of wave run-up/overtopping and structure damage is a key task in the design and safety assessment of coastal and harbor structures. Run-up/overtopping and damage must be below acceptable limits, both in extreme and in normal operating conditions, to guarantee the stability of the structure and the safety of people and assets on and behind the structure. The mean-sea-level rise caused by climate change and its effects on wave climate may increase the number and intensity of run-up/overtopping events and make the existing coastal/harbor structures more vulnerable to damage.

Accurate estimates, through physical modelling, of the statistics of overtopping waves for a set of climate change conditions, are needed. The research project HYDRALAB+ (H2020-INFRAIA-2014-2015) gathers an advanced network of environmental hydraulic institutes in Europe, which provides access to a suite of environmental hydraulic facilities. They play a vital role in the development of climate change adaptation strategies, by allowing the direct testing of adaptation measures and by providing data for numerical model calibration and validation. The use of physical (scale) models allows the simulation of extreme events as they are now, and as they are projected to be under different climate change scenarios.

The enclosed dataset refers to the experimental work developed at LNEC within HYDRALAB+ and considers 2D damage and overtopping tests for a rock armor slope, with four different approaches to represent storms. Data of free surface elevation, overtopping and damage is presented.

More information

  • DOI: 10.5281/zenodo.1574835
  • Language: en

Subjects

  • breakwaters, overtopping, physical modeling

Dates

  • Publication date: 2018
  • Issued: November 27, 2018

Notes

Other: {"references": ["Lemos, R., Neves, M.G., Fortes, C.J.E.M., Mendon\u00e7a, A., Capit\u00e3o, R. and Reis, M.T. (2018). \"Damage progression in rubble-mound breakwaters scale model tests under different storm sequences\". Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab18), Santander, Spain, May 22-26, 2018", "Mendon\u00e7a, A., Lemos, R., Fortes, J., Reis, M.T., Neves, M.G., Ramos, A. and Capit\u00e3o, R. (2017). \"Overtopping events in breakwaters: comparison of 2D physical experiments and empirical formulae\". Proc. 37th IAHR World Congress, 13-18 August, Kuala Lumpur, Malaysia", "Silva, E. and Allsop, W. and Riva, R. and Rosa Santos, P. and Taveira Pinto, F. and Mendon\u00e7a, A. and Teresa Reis, M. The Conundrum of Specifying very low Wave Overtopping Discharges. ICE Coasts, Marine Structures and Breakwaters 2017, 5-7 September 2017, Liverpool, UK (2017)."]}

Rights


Much of the data past this point we don't have good examples of yet. Please share in #rdi slack if you have good examples for anything that appears below. Thanks!

Funding Information

AwardnumberAwarduriFunderidentifierFunderidentifiertypeFundername
654110info:eu-repo/grantAgreement/EC/H2020/654110/10.13039/100010661Crossref Funder IDEuropean Commission

Format

electronic resource

Relateditems

DescriptionItem typeRelationshipUri
IsVersionOfhttps://doi.org/10.5281/zenodo.1574834
IsPartOfhttps://zenodo.org/communities/hydralab
IsPartOfhttps://zenodo.org/communities/zenodo