This is a limited proof of concept to search for research data, not a production system.

Search the MIT Libraries

Title: Synechococcus (WH8102 and CC9311) growth and genetic sequence accessions from experiments with variable pCO2 treatments from 2016 to 2018

Type Dataset Morris, James (2022-11-03): Synechococcus (WH8102 and CC9311) growth and genetic sequence accessions from experiments with variable pCO2 treatments from 2016 to 2018. Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu. Dataset. https://darchive.mblwhoilibrary.org/handle/1912/29465

Author: Morris, James ;

Links

Summary

Synechococcus (WH8102 and CC9311) growth and genetic sequence accessions from experiments with variable pCO2 treatments. These data were produced as part of a study of the "Community context and pCO2 impact the transcriptome of the "helper" bacterium Alteromonas in co-culture with picocyanobacteria" (Barreto Filho et al., 2022). Sequences files are accessible from the National Center for Biotechnology Information (BioProject PRJNA377729). The following results abstract describes these data along with related datasets which can be accessed from the "Related Datasets" section of this page. Many microbial photoautotrophs depend on heterotrophic bacteria for accomplishing essential functions. Environmental changes, however, could alter or eliminate such interactions. We investigated the effects of changing pCO2 on gene expression in co-cultures of 3 strains of picocyanobacteria (Synechococcus strains CC9311 and WH8102 and Prochlorococcus strain MIT9312) paired with the ‘helper’ bacterium Alteromonas macleodii EZ55. Co-culture with cyanobacteria resulted in a much higher number of up- and down-regulated genes in EZ55 than pCO2 by itself. Pathway analysis revealed significantly different expression of genes involved in carbohydrate metabolism, stress response, and chemotaxis, with different patterns of up- or down-regulation in co-culture with different cyanobacterial strains. Gene expression patterns of organic and inorganic nutrient transporter and catabolism genes in EZ55 suggested resources available in the culture media were altered under elevated (800 ppm) pCO2 conditions. Altogether, changing expression patterns were consistent with the possibility that the composition of cyanobacterial excretions changed under the two pCO2 regimes, causing extensive ecophysiological changes in both members of the co-cultures. Additionally, significant downregulation of oxidative stress genes inMIT9312/EZ55 cocultures at 800 ppm pCO2 were consistent with a link between the predicted reduced availability of photorespiratory byproducts (i.e., glycolate/2PG) under this condition and observed reductions in internal oxidative stress loads for EZ55, providing a possible explanation for the previously observed lack of “help” provided by EZ55 to MIT9312 under elevated pCO2. The data and code stored in this archive will allow the reconstruction of our analysis pipelines. Additionally, we provide annotation mapping files and other resources for conducting transcriptomic analyses with Alteromonas sp. EZ55. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/882390

More information

  • URI: https://hdl.handle.net/1912/29465
  • DOI: 10.26008/1912/bco-dmo.882390.1
  • Language: en_US

Dates

  • accessioned: November 03, 2022
  • available: November 03, 2022
  • created: October 13, 2022
  • Publication date: November 03, 2022
  • coverage: Note: 20161024 - 20180128 (UTC)

Notes

Dataset: Synechococcus growth and genetic sequence accessions from pCO2 experiments

Rights


Much of the data past this point we don't have good examples of yet. Please share in #rdi slack if you have good examples for anything that appears below. Thanks!

Funding Information

AwardnumberAwarduriFunderidentifierFunderidentifiertypeFundername
NSF Division of Ocean Sciences (NSF OCE) OCE-1851085

Format

electronic resource

Locations

KindValueGeopoint
Lab work: Birmingham, Alabama and New York, New York. Field Work: Bermuda Atlantic Time Series.

Relateditems

DescriptionItem typeRelationshipUri
Not specifiedhttp://lod.bco-dmo.org/id/dataset/882390
Not specifiedhttps://doi.org/10.26008/1912/bco-dmo.882390.1